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Abstract

was 50 nm x 50 nm per dot.

Quantum dots (QDs) were immobilized on an ultra-flat Au surface by using amide binding between the carboxyl
groups on the QDs and the amino groups of the self-assembled monolayer on the surface. The number density of the
QDs estimated by atomic force microscopy (AFM) agreed with the quantity of QDs estimated by X-ray photoelectron
spectroscopy and fluorescence microscopy. QDs were also immobilized on dot patterns fabricated by e-beam
lithography. AFM was able to identify clusters of just a few QDs on the dot patterns, whose minimum designed size
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Background
Colloidal quantum dots (QDs), which are nanometer-
scale semiconductor particles suspended in a solvent, are
prospective materials for highly efficient electronic and
optoelectronic devices, such as field electric transistors,
photovoltaics, and light-emitting diodes [1-3]. To fab-
ricate such devices, techniques to immobilize QDs on
the designed areas of the devices are required. In addi-
tion, control of the number of QDs immobilized on the
designed areas, especially for nanostructures, is another
important factor in constructing QD-based devices. For
example, for single-electron devices, a single or a few QDs,
which serve as a Coulomb island, must be fixed between
two electrodes [4]. An example of an optical application
was the confinement of the propagating direction of light
by an optical Yagi-Uda antenna, which was driven by a
single QD fixed on the feed element [5-9]. Propagation
of a plasmon polariton on a metal nanowire was also
demonstrated by a single QD coupled with the nanowire
(10, 11].

The formation of a self-assembled monolayer (SAM) is
a popular and effective method to generate an appropri-
ate surface structure for binding QDs to the surface. On
Au surfaces, a suitable choice for monolayer formation
is alkanethiols, whose S atom specifically binds to sur-
face Au atoms. This allows amino-terminated Au surfaces
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to be fabricated by using amino-alkanethiol molecules
[12-15]. The amino groups on the modified Au surface
can then bind with carboxyl groups on the QDs by form-
ing amide bonds [16]. In this case, the SAM serves as a
binder between the QDs and the surface.

However, analysis of the number of QDs fixed on the
surface is technically challenging. The quantities of the
QDs on the surface can be estimated based on the inten-
sity of fluorescence from the QDs or the atomic com-
position of the QDs obtained by X-ray photoelectron
spectroscopy (XPS). These methods, however, do not give
the exact number of QDs nor have enough spatial resolu-
tion to identify a single QD. It was found by fluorescence
microscopy that a single QD showed blinking behaviors of
its fluorescence [17—19]. However, the exact QD number
density on the surface and the distance between two QDs
are difficult to measure without advanced techniques such
as spectral imaging in optical microscopy [20]. In prin-
ciple, scanning electron microscopy (SEM) and atomic
force microscopy (AFM) have sufficient spatial resolution
to identify an individual QD on the surface [4, 21-23].
However, the imaging of surface-bound QDs by SEM
is frequently prevented by surface organic components,
including contaminants, and by denaturation of the SAM.
Meanwhile, the observation of QDs by AFM depends on
the roughness of the substrate; hence, a single QD on a
rough surface, such as an Au thin film prepared by thermal
evaporation, is difficult to distinguish from a surface pro-
trusion, because such protrusions are comparable in size
to the QD.
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In this study, we immobilized QDs on an ultra-flat Au
surface containing an SAM. The number of QDs was
exactly counted from AFM images and compared with
the quantity of QDs estimated by XPS and fluorescence
microscopy. QDs were also fixed on patterns that had
been fabricated by e-beam lithography, and the number of
the QDs on the patterns was analyzed by AFM.

Methods

Preparation of an Ultra-flat Surface

An Au substrate having an ultra-flat surface was prepared
according to the previously reported method [24-26], as
follows. An Au film was deposited by vacuum evaporation
on a glass slide that had been cleaned with piranha solu-
tion and dried by N gas blowing. The thickness of the film
was approximately 600 nm. A glass substrate was attached
to the Au surface using an epoxy adhesive (Norland, Opti-
cal Adhesive 61), and the Au film was then peeled off from
the glass slide with tweezers. The Au surface that had been
attached to the glass slide was used as the ultra-flat Au
surface. The ultra-flat Au surface was cleaned by UV/O3
exposure before formation of SAM.

Immobilization of QDs with SAM

A self-assembled monolayer having amino groups on
the ultra-flat Au surface was formed by immersing the
substrate in an 1 mM ethanol solution of 11-amino-1-
undecanethiol (Dojindo laboratories) at 35 °C for 24 h and
rinsing the substrate with ethanol, ultra-pure water, and
borate buffer solution (pH 9.1). The QDs used in this study
had carboxyl groups on their surfaces (Invitrogen, Qdot
800 ITK carboxyl). The height of QD on a glass slide mea-
sured approximately 8 nm by AFM. The SAM-covered
substrate was immersed in a borate buffer solution of
the QDs, including water-soluble carbodiimide (Dojindo)
(5 mM), at 35 °C for 24 h to bind the carboxyl groups on
the QDs to the amino groups on the Au surface by the
amide binding. After that, the substrate was rinsed with
borate buffer solution and ultra-pure water and dried by
N, gas blowing.

Immobilization of QDs on a Patterned Surface

Resist patterns on the ultra-flat Au substrate were fabri-
cated by e-beam lithography. The resist patterns consisted
of arrays of dots of bare Au surface, with the remaining
area covered by the resist (ZEP520, ZEON). The pat-
terns were designed with square dot having sides 50 nm,
100 nm, 500 nm, 1 um, or 10 um. The thickness of the
resist was approximately 80 nm. An amino-terminated
SAM was formed on the bare dots, and the QDs were
immobilized by the same method as described above.
Then, the resist covering the surface (except on the bare
dots) was removed by solvent. The detailed process is
described in [27].

Page 2 of 6

Estimation of the Number of QDs
The quantity of QDs on the substrate was estimated using
XPS. The QDs used in this study consisted of a CdSe
core with a ZnS shell, covered with a polymer containing
carboxyl groups. The atomic ratio of Cd thus reflects
the quantity of QDs fixed on the surface. The XPS mea-
surements were conducted with a PerkinElmer PHI 1600
ESCA system. The X-ray source was Mg K, (1254.6 eV).
For charge correction of the binding energy, the hydrocar-
bon component was adjusted to 284.6 eV in the C; peak.

Fluorescence from the QDs was observed with a fluores-
cence microscope (BX50, Olympus) with an objective lens
(x10, numerical aperture (NA) 0.4), a filter set consist-
ing of an emission filter (D800/50, Chroma), an excitation
filter and a dichroic mirror (D605B, Semrock), and an
electron-multiplying CCD (EMCCD) camera (iXon 897,
Andor). The gain of the EMCCD camera was set to a con-
stant value (800), and the measured intensity was linear.
Using the above lens with low NA and low magnification,
the obtained images did not have high enough sensitivity
to detect the fluorescence of a single QD.

AFM observation was carried out in ambient conditions
with a Nanoscope IIla (Digital Instruments).

Results and Discussion

Density of the Immobilized QDs

The XPS spectra of the Au surfaces with/without QDs are
shown in Fig. 1a. The substrate covered with the SAM, but
not exposed to the Cd solution, displayed no XPS peak for
Cd, whereas those immersed in the QD solution did con-
tain Cd; this element is one of the main components of
the QDs (Fig. 1a). Inspection of the spectra suggests that
the amount of QDs on the surface depended on the con-
centration of QDs in the solutions in which the substrates
were immersed.

The atomic ratio of Cd/Au, an indicator of the amount
of QDs immobilized on the Au surface, increased with
the concentration of the QDs (Fig. 1b). This confirms that
the amount of the QDs fixed on the Au surface increased
with the concentration of the QDs in the solution. The
trend of the XPS data can be interpreted by a fitting curve
based on Langmuir isotherm adsorption model [28]. Each
XPS datum was obtained from a measurement on a sin-
gle spot, which was an approximately circular area with a
radius of 0.4 um. The deviation of the data from the fit-
ting curve indicates a degree of spatial inhomogeneity in
the amount of QDs on the surface. Nonetheless, the anal-
ysis based on the Langmuir model indicates that the QDs
were immobilized on the SAM, forming a monolayer but
not a multilayer.

The measured fluorescence intensities of the QDs fur-
ther confirm that the amount of QDs on the surface
depended on the concentration of QDs in the solu-
tion (Fig. 2). The fluorescence intensities, in units of
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Fig. 1 a XPS spectra of the substrates with/without QDs. b Atomic ratio of Cd/Au as a function of the concentration of QD solution

counts/pixel, were the mean value obtained from nine
images taken with the EMCCD camera. Like the XPS
data, the fluorescence intensities were also consistent with
the Langmuir isotherm adsorption model. In general, the
fluorescence of a QD on a metal surface depends on
the distance between the QD and the surface, because
of both the quenching and enhancement of fluorescence
[29]. In this study, the distance between the QDs and the
Au surface was in principle determined by the thickness
of the SAM and that of the polymer covering the QDs.
The observation of fluorescence of the QDs suggests that
the QDs were separated at a moderate distance from the
Au surface by the SAM and the polymer. However, the
total intensity was relatively weaker, because the distance
between the QDs and the metal surface was not optimal
for emission, and fluorescence of some of the QDs were
quenched.

In the AFM images of the ultra-flat surfaces that were
immersed in QD solutions, many globules can be clearly
observed (Fig. 3). These globules were approximately 8 nm
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Fig. 2 Fluorescence intensity as a function of the concentration of QD
solution

in height, consistent with the size of the QDs. On the sur-
face that immersed in 0.1 nM QD solution, the number
of globules was approximately 60, across a total area of
500 x 500 nm?. The number of globules increased with
the concentration of the QD solution: 160 for 0.3 nM, 180
for 0.5 nM, and 480 for 5 nM. This concentration depen-
dence suggests that the globules were indeed the QDs
immobilized on the surface.

The number density, which was calculated from images
of five different areas, was proportional to the atomic ratio
of Cd/Au and also supports that the globules were the
QDs (Fig. 4a). The fitting line is projected to cross the
x-axis, representing the number density, at around 200.
This indicates that a number density of 200 um~2 QDs is

Fig. 3 AFM images of QDs on the flat Au surface. The concentrations
of QD solution were 0.1,0.3,0.5, and 5 nM
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the limit of detection by XPS measurement. If the num-
ber density of QDs having a diameter of 8 nm on an Au
surface is 200 um~2, the QDs cover approximately 1% of
the surface, which is too small to be analyzed with XPS.
In addition, the QDs used in this study includes other
elements, such as Se, Zn, S, and C, implying that the
actual amount of Cd in the QDs adsorbed at a density of
200 um~2 is less than the detection limit.

The detection limit in the fluorescence measurements
was also found to be approximately 200 pm~2 in Fig. 4b.
The QDs also showed the blinking behavior, attributed
to a fraction of the QDs switching intermittently to the
off state (without fluorescence). Moreover, the NA and

magnification of the objective lens used in this measure-
ment were relatively small. Considering all these factors,
the measured intensity should be smaller than the total of
fluorescence actually emitted from the QDs on the sur-
face, making a density as low as 200 QDs um 2 potentially
difficult to detect.

QDs on the Patterned Surface

QDs were immobilized on the dot patterns that were fab-
ricated by e-beam lithography. Typical AFM images of the
QDs on the patterns are shown in Fig. 5. In the patterns
with the smallest dots, where the designed shape of each
dot was a square 50 nm on each side (Fig. 5a), between 1
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Fig. 5 AFM images of QDs on the dot patterns. The designed dot sizes were 50 nm (a), 100 nm (b), and 500 nm (c). Immobilized QDs are indicated with
white arrows in a. d Number density of QDs on the dot patterns. Dashed line represents the number density of QDs on the Au surface without pattern
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and 3 QDs were observed on each dot, as indicated with
arrows in the figure. The mean number of QDs on each
dot was 1.5. Thus, even though such a small number of
QDs would be difficult to analyze with XPS, they were
successfully identified by AFM imaging on the ultra-flat
Au surface. The number of QDs on the patterns increased
with the increase of the dot size: approximately 6 QDs
per dot on the square dots with sides of length 100 nm
(Fig. 5b) and 170 QDs per dot on the square dots with
sides of length 500 nm (Fig. 5c).

The actual areas on which the QDs were immobilized
were larger than the designed sizes of the dot, because of
an overdose of the electron beam. In Fig. 5¢c, for exam-
ple, although the designed size was 500 nm, QDs were
immobilized on a circular area with a diameter of 900 nm.
The spatial distribution of QDs on the pattern with 500-
nm dot sides was not uniform; rather, the dots were
mostly found on the periphery of the circular area. The
overdose of the electron beam denatured the resist poly-
mer, as well as expanding the area on which the SAM
formed. The denatured polymer fractions remained as
residues on the surface and prevented the formation of
SAMs and immobilization of QDs, which resulted in the
inhomogeneous distribution. In the patterns with smaller
dots, no such inhomogeneity in the distribution was not
noticeable.

The number density of QDs on the dot patterns did not
depend on the pattern size and was approximately one
seventh of that of QDs on the surface without pattern
(Fig. 5d dashed line). This decrease in the number density
was a natural consequence of the residue of the resist on
the surface. The immobilization of QDs could only occur
on regions of bare Au surface, appropriate for SAM for-
mation, whereas large areas were covered by the residue of
the resist. Therefore, this reduction of the area suitable for
immobilization of QDs reduced the amount of QDs on the
patterned surfaces. In addition, during the lift-off process,
by which the resist was removed by solvent after immo-
bilization of QDs, some disruption may have occurred
to the amide binding, SAM, or the polymer covering the
QDs. Optimizing the dose of the electron beam should
improve the yields of immobilized QDs on a patterned
surface.

Conclusions

QDs were immobilized on an ultra-flat Au surface by
amide binding between the amino-terminated surface and
the carboxyl groups on the QDs. The amount of QDs
on the surface, which was analyzed by XPS and fluores-
cence microscopy, agreed with the Langmuir adsorption
isotherm. The QDs on the ultra-flat Au surface were
clearly identified by AFM, and their number density was
proportional to the amount of QDs as calculated by XPS
and fluorescence microscopy.
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Furthermore, the use of AFM made it possible to dis-
tinguish a few QDs, or even a single QD, immobilized in
a pattern on the ultra-flat Au surface. Such small clusters
of QDs are difficult to analyze by XPS. The number den-
sity of QDs on the patterned surface was less than that on
a surface without a pattern. This reduction was attributed
to the residue of the resist used in the patterning pro-
cess and to damages to the SAM and/or amide binding
during the lift-off process. These results provide invalu-
able information on the control of number and position in
immobilization of QDs.
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